Missing Gas Found in Milky Way

Missing Gas Found in Milky Way
This is a false-color image of the star AE Aurigae (bright source of light slightly off center of image) embedded in a region of space containing smoke-like filaments of carbon-rich dust grains, a common phenomenon. Such dust might be hiding deuterium, an isotope of hydrogen, and stymieing astronomers' efforts to study star and galaxy formation. The FUSE satellite has surveyed the local deuterium concentration in the galaxy and found far more than expected. Because deuterium is a tracer of star and galaxy evolution, this discovery could radically alter theories about how stars and galaxy form. (Image credit: T.A. Rector and B.A. Wolpa, NOAO, AURA, and NSF)

The true abundance in the Milky Way of a heavy, primordial form of hydrogen has eluded scientists for decades, but it turns out that huge quantities of it have been hidden in the dust that is scattered between stars.

The new finding relied on satellite measurements of a type of hydrogen called deuterium and found that its distribution in our galaxy is patchy rather than uniform. It will force big changes in theories about star and galaxy formation, astronomers say.

"Since the 1970s we have been unable to explain why deuterium levels vary all over the place," said Jeffrey Linsky, an astrophysicist at the University of Colorado at Boulder. "The answer we found is as unsettling as it is exciting."

Scientists think deuterium is burned and destroyed during a star's lifetime, which theoretically means the amount of deuterium present in the universe can be used as a measure of star creation and galaxy building over billions of years.

New data from NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, launched in 1991 to study the origin and evolution of hydrogen and deuterium in the universe, allowed Linsky and his colleagues to confirm previous patchy deuterium findings and take it big step further.

The patchy distribution of deuterium especially made sense to Princeton University's Bruce Draine, one of Linsky's co-authors on a research paper on the new deuterium findings.  Three years ago, he proposed that the patchiness has to do with the chemistry of dust grains found in the space between stars, the interstellar medium. These regions of space consist mostly of gas but there is a small fraction of material in the form of very small particles, usually less than 1 micron in size (one particle of flour is about 60 microns wide).

"My guess is that the second scenario is the more likely answer," Linsky told SPACE.com. "We know very little about the rate at which deuterium-rich gas is raining down on the galaxy today and in the past."

  • The Strangest Things in Space
  • Top 10: The Wildest Weather in the Galaxy
  • Top 10 Star Mysteries

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Robin Lloyd
Contributor

Robin Lloyd was a senior editor at Space.com and Live Science from 2007 to 2009. She holds a B.A. degree in sociology from Smith College and a Ph.D. and M.A. degree in sociology from the University of California at Santa Barbara. She is currently a freelance science writer based in New York City and a contributing editor at Scientific American, as well as an adjunct professor at New York University's Science, Health and Environmental Reporting Program.