Charon Is Pluto's First Line of Defense Against Solar Wind Onslaught

Charon and Pluto
(Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

Space weather can be a nightmare for planetary atmospheres, particularly for ones that don't have a magnetic field to protect them — unlike Earth's, which has a powerful magnetosphere acting as a shield. It might therefore be strange to hear that dwarf planet Pluto, which isn't known for its powerful global magnetic field, is able to possess an atmosphere at all. But like other planets in the solar system, the sun erodes Pluto's atmosphere — albeit at a slower rate than expected.

Although astronomical measurements detected the presence of an atmosphere at Pluto long before the NASA New Horizons flyby in July 2015, very little was known about how much was being eroded into space by the continuous stream of solar wind particles. New Horizons measurements, however, proved that the rate of atmospheric loss was 100 times less than expected and, in new research published this week in the journal Icarus, researchers think they know what might be protecting Pluto's tenuous atmospheric gases.

RELATED:Young at Heart: Pluto's Ice Only 10 Million Years Old

Researchers from Georgia Institute of Technology have shown that when Charon orbits between Pluto and the sun, its presence can modify the dwarf planet's bow shock — a standing shock wave that appears "upstream" of Pluto as the solar wind particles encounter Pluto's thin atmosphere, like the wave that roils in front of a boat's bow when it powers through water — thereby shielding Pluto's atmosphere for a short time. Charon maximizes this protection should it also have an atmosphere, but its protective impact is minimal when it either doesn't have an atmosphere or when it is positioned "downstream" of Pluto.

As Pluto and Charon orbit so close to one another, the pair are believed to share atmospheric gases and when Charon passes behind Pluto particles originating from Pluto are deposited at the moon's poles, appearing as a dark brown deposit in New Horizons observations.

As Pluto is located so far away from the sun in the Kuiper Belt, the impact of the solar wind is much lower than its impact on planets closer to the sun. The space weather impact has been reduced even further with the help of Charon.

RELATED: Can We Call Pluto and Charon a 'Binary Planet' Yet?

"As a result, Pluto still has more of its volatile elements, which have long since been blown off the inner planets by solar wind," said Georgia Tech student John Hale. "Even at its great distance from the sun, Pluto is slowly losing its atmosphere. Knowing the rate at which Pluto's atmosphere is being lost can tell us how much atmosphere it had to begin with, and therefore what it looked like originally. From there, we can get an idea of what the solar system was made of during its formation."

As Pluto and Charon orbit so close, and Charon is roughly half the size of its dwarf planet buddy, the pair orbit a common point in space known as the "barycenter." This orbital oddity added fuel to the debate as to whether Pluto should be called a dwarf planet, or whether Pluto and Charon should be designated a "binary planet." Now, with more findings about the pair's atmospheric interactions, it could be argued that the case for calling Pluto a binary planet is as valid as ever.

RELATED: A Space Probe Finishes Its Mission...Now What?

Originally published on Seeker.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Media Relations Specialist, NASA's Jet Propulsion Laboratory

Ian O'Neill is a media relations specialist at NASA's Jet Propulsion Laboratory (JPL) in Southern California. Prior to joining JPL, he served as editor for the Astronomical Society of the Pacific‘s Mercury magazine and Mercury Online and contributed articles to a number of other publications, including Space.com, Space.com, Live Science, HISTORY.com, Scientific American. Ian holds a Ph.D in solar physics and a master's degree in planetary and space physics.