Does the moon need its own time zone? We may need to decide soon

NASA's Artemis 1 Orion capsule snapped this photo of itself and the moon during its historic mission in late 2022.
NASA's Artemis 1 Orion capsule snapped this photo of itself and the moon during its historic mission in late 2022. (Image credit: NASA)

With the next era of lunar exploration on the horizon, scientists have begun to consider how time should be kept on the moon and how lunar missions will fix their own positions independent from Earth. 

This rethink culminated in the agreement, at a meeting of space agencies in November 2022, that an internationally accepted common reference time for the moon is vital. A joint international effort is now being launched in an attempt to achieve this. 

To date, each new moon mission has operated on its own timescale, which is related to time here on Earth. This strategy requires deep-space antennas used for two-way communication with mission control to also keep onboard chronometers synched to terrestrial time. This way of keeping time on the moon won't be feasible on some future spacecraft, however, such as NASA's moon-orbiting Gateway space station, which will need to coordinate with a wealth of other lunar and space missions.

Related: The 10 greatest images from NASA's Artemis 1 moon mission

ESA's Moonlight initiative plans to expand satellite-navigation coverage and communication links to the moon.

ESA's Moonlight initiative plans to expand satellite-navigation coverage and communication links to the moon. (Image credit: ESA-K Oldenburg)

Once astronauts are staying at Gateway, the space station will be resupplied via regular NASA Artemis launches. This activity will lead up to the establishment of a crewed base near the lunar south pole, if all goes according to plan.

But even prior to these crewed missions, numerous uncrewed missions — including a multitude of cubesats launched by each Artemis mission and the European Space Agency's (ESA) Argonaut European Large Logistics Lander — will be in place around the moon.

These missions will need to interact and communicate with each other to perform joint observations, and perhaps even to meet up with each other. 

Facilitating these communications will be the ESA's Moonlight lunar communication and navigation service and an equivalent NASA service, the Lunar Communications Relay and Navigation System, linking missions with each other and with Earth. To interact and maximize interoperability, these systems will need to employ the same timescale as the crewed and uncrewed missions they support, experts say. 

"This will allow missions to maintain links to and from Earth, and guide them on their way around the moon and on the surface, allowing them to focus on their core tasks," Moonlight system engineer Wael-El Daly said in an ESA statement. "But also, Moonlight will need a shared common timescale in order to get missions linked up and to facilitate position fixes."

Taking guidance from Earth's global navigation system

A similar system linking time with locations in a geodetic reference frame has already been achieved here on Earth; it forms the basis of our Global Navigation Satellite Systems (GNSS). The system is used by an array of technology, including smartphones, to calculate the position of its user to a meter or even a tenth of a meter.

"The experience of this success can be reused for the technical long-term lunar systems to come, even though stable timekeeping on the moon will throw up its own unique challenges  —  such as taking into account the fact that time passes at a different rate there due to the moon's specific gravity and velocity effects," ESA's chief Galileo engineer Jörg Hahn said in the same statement. 

Accurate navigation requires extremely rigorous timekeeping. For example, terrestrial satellite navigation systems, like Galileo in Europe and GPS in the U.S., have their own distinct timing systems. But these systems possess fixed offsets relative to each other down to a few billionths of a second and are also fixed to the Universal Coordinated Time (UTC) global standard, which is maintained by the Paris-based Bureau International de Poids et Mesures (BIPM). UTC is also used by the internet and aviation, as well as scientific experiments that require highly precise time measurements.

What is currently unsettled is whether one agency will be responsible solely for maintaining the proposed new lunar chronology system, as the BIPM does for UTC. Another undecided element is if "lunar time" will be independent or will be synchronized with time on Earth.

Settling such questions requires overcoming several technical hurdles, such as the fact that clocks run slower on the moon than they do on Earth. Though lunar clocks gain just 56 millionths of a second each Earth day, this difference would eventually lead to problems in precision measurements. Additionally, clocks would also tick at different rates on the lunar surface compared to their rate while in orbit. 

Related: Fun information about Earth's moon

"Of course, the agreed time system will also have to be practical for astronauts," Moonlight Management Team member Bernhard Hufenbach said in the statement. "This will be quite a challenge on a planetary surface where in the equatorial region each day is 29.5 days long, including freezing fortnight-long lunar nights, with the whole of Earth just a small blue circle in the dark sky. But having established a working time system for the moon, we can go on to do the same for other planetary destinations."

Additionally, Earth-based GNSS also depends on the International Terrestrial Reference Frame (ITRS) a three-dimensional coordinate system for Earth established in 1991. This allows consistent measurement of precise distances between points across our planet. Moon navigation will require a similar, internationally accepted moon-centered —  or "selenocentric" —  coordinate reference frame.

"Throughout human history, exploration has actually been a key driver of improved timekeeping and geodetic reference models," said ESA Moonlight Navigation Manager Javier Ventura-Traveset. 

"It is certainly an exciting time to do that now for the moon, working towards defining an internationally agreed timescale and a common selenocentric reference, which will not only ensure interoperability between the different lunar navigation systems but which will also foster a large number of research opportunities and applications in cislunar space," Ventura-Traveset added.

Follow us @Spacedotcom, or on Facebook and Instagram. 

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Robert Lea
Senior Writer

Robert Lea is a science journalist in the U.K. whose articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University. Follow him on Twitter @sciencef1rst.

  • XAirForce
    Can we use UTC taking into account the distance from Sun and pulsars to regulate the second hand 🖐 @nasa @nist. We can call it Stardate : )

    Signed: Startfleet Adm. Abe One K’Nowledge -Jedi
    Reply
  • Pogo
    Agree. Why not use UTC? It is used here everywhere down here where where multiple time zones are involved by everyone where it makes a difference, including on the ISS. This should be a no brained.

    That being said, they could develop some sort of local time to relate the Sun position and so forth, but, in communication with Earth, and coordinating with various missions, UTC is the obvious choice, IMHO.
    🕔
    Reply
  • Unclear Engineer
    I am not seeing a problem that we have not already encountered and solved in similar circumstances.

    We already deal with different clock speeds between Earth, low Earth orbit, Mars landers, and even the various probes we have sent to the gas giant planetes and beyond, even out of the solar system into interstellar space.

    We already have bases in Antarctica that have periods of light and dark that are far different than the circadian rhythm that human bodies are tuned to.

    We already have astronauts working in low Earth orbit for up to a year at a time, seeing the Earth below going from light to dark and back again roughly every 90 minutes, while they are in light a bit more than darkness.

    All of this is done with standardization "Universal Time", and we are pretty darn good at it, by now.

    So, while the Moon probably needs some sort of system for relating its various cyclic phenomena phases to Universal Time, I don't see any value to having all of that somehow predicated on something like just one of those cycles, such as when the Sun angle at a certain location is some number or the Moon's location crosses the Earth's meridian for Paris. Yes, those numbers may have some importance for some functions, but having the astronauts wearing Rolexes that run on "Moon time" seems ridiculous.
    Reply
  • billslugg
    The French wanted TUC (Time Universal Coordinated). the English wanted UCT (Universal Coordinated Time) so we settled on UTC. Perhaps we can reach a similarly dysfunctional compromise on the Moon. I'm for MUT (Moon Universal Time) or TUM (Time Universal Moon). Toss in Mars and we get MUMU (Moon Universal Mars Universal).
    Reply
  • Unclear Engineer
    There is always "ZULU".
    Reply