Astronauts could use Mars soil for 3D-printing on the Red Planet
Making things for Mars astronauts on-planet would be a boon for future human missions.
Martian soil could serve as a 3D-printing material, researchers have shown, meaning it could be used to manufacture items on the Red Planet.
In a series of tests, Amit Bandyopadhyay, a professor at the Washington State University School of Mechanical and Materials Engineering, and his team used simulated crushed Martian regolith to demonstrate its capabilities as a 3D-printing material.
The results may be crucial for future crewed missions to Mars.
"In space, 3D printing is something that has to happen if we want to think of a manned mission, because we really cannot carry everything from here," Bandyopadhyay said in a statement. "And if we forgot something, we cannot come back to get it."
Related: Off-Earth manufacturing could help astronauts explore the moon and Mars
In addition to addressing logistical problems, Mars manufacturing would reduce costs. On the space shuttle, for example, every kilogram (2.2 pounds) of payload ferried to low Earth orbit cost NASA $54,000.
The average distance between Earth and Mars is 140 million miles (225 million km), and the cost would be exponentially higher to get supplies to the Red Planet than to the International Space Station in low Earth orbit.
Get the Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
In most of the 3D-printing tests, the researchers blended different amounts of simulated Martian regolith with a titanium alloy. They also attempted to make a 3D-printing material out of pure simulated regolith.
Related: Mars explorers could harvest oxygen from the atmosphere using plasma
They heated the dry ingredients to 3,632 degrees Fahrenheit (2,000 degrees Celsius) and then poured the melted material into a 3D printer to make the material into a variety of shapes and sizes. The researchers tested each object for strength and durability.
The team discovered that a mixture containing 5% regolith was harder and stronger than the titanium alloy alone. The pure regolith cracked as it cooled after printing, but the team suggested it could be used for radiation shield coating, which would not be affected by the cracks.
"This establishes that [3D printing with regolith] is possible, and maybe we should think in this direction because it's not just making plastic parts, which are weak, but metal-ceramic composite parts, which are strong and can be used for any kind of structural parts," Bandyopadhyay said in the statement.
The team's research was published July 24 in the International Journal of Applied Ceramic Technology.
Follow Stefanie Waldek on Twitter @StefanieWaldek. Follow us on Twitter @Spacedotcom and on Facebook.
Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.
Space.com contributing writer Stefanie Waldek is a self-taught space nerd and aviation geek who is passionate about all things spaceflight and astronomy. With a background in travel and design journalism, as well as a Bachelor of Arts degree from New York University, she specializes in the budding space tourism industry and Earth-based astrotourism. In her free time, you can find her watching rocket launches or looking up at the stars, wondering what is out there. Learn more about her work at www.stefaniewaldek.com.