An Earth-size planet in the habitable zone? New NASA discovery is one special world.
HONOLULU — When scientists search for alien planets, they get a special thrill when they find one that seems to reflect our own world back to us.
TOI 700 d is the newest member of that elite club. The planet was discovered courtesy of NASA's Transiting Exoplanet Survey Satellite, or TESS, as one of three worlds in a distant solar system. Unlike its neighbors — and the vast majority of planets scientists have identified so far — it seems to be about the same size as Earth and to orbit its star at a distance that would allow water to remain liquid on its surface. The discovery was announced here on Jan. 6 at the 235th meeting of the American Astronomical Society.
As an Earth-size planet in its star's habitable zone, TOI 700 d is a big deal for scientists. "We really want to understand the question, could life form on these planets around very small stars? And this is kind of a nice big step towards that goal," Joseph Rodriguez, an astronomer at the Harvard-Smithsonian Center for Astrophysics in Massachusetts, told Space.com. "We're nowhere near it yet and we're talking, probably, decades, if not much, much longer to answer this question. but we're making steps towards arguably one of the biggest questions in science — and not just science but philosophy, religion and a lot of other things."
Related: The Biggest Alien Planet Discoveries of 2019
But for all their excitement, the scientists involved in the discovery don't know a whole lot about TOI 700 d. First, they know about its star, a red dwarf that appears to be a more pleasant sun than some. Active stars can fling bursts of radiation and of highly charged material at planets orbiting them, potentially sterilizing these worlds.
"The star is absolutely quiet," Emily Gilbert, a graduate student in astronomy at the University of Chicago, told Space.com. "We had 11 [months] of TESS data and I didn't see a single flare. The star is a little bit older so it's kind of calmed down a bit over its lifetime, we expect."
The scientists have spotted three planets so far around this quiet star: TOI 700 b, c and d. The first two orbit too close to the star to be promising worlds for life, but the third orbits in the magic ring scientists call the habitable zone, where temperatures allow water to remain liquid on a planet's surface. "It's actually farther into the habitable zone than Earth; Earth itself is barely habitable," Gilbert said.
Get the Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
They are also confident, although not positive, that this planet is tidally locked — the same side always faces its star in a constant day, while the other side is in constant night.
But from there, the uncertainties start to pile up. In particular, the scientists working on TOI 700 d want one crucial measurement: its mass. That number would clarify how likely the planet is to be a rocky world like ours, rather than a gassy body that looks like a small sibling of Neptune.
All About Space magazine takes you on an awe-inspiring journey through our solar system and beyond, from the amazing technology and spacecraft that enables humanity to venture into orbit, to the complexities of space science.
Subscribe for just $5 (or £5/€5).
They've announced their findings anyway because that measurement is going to be very hard to get. "There are facilities that can do it," Rodriguez said. "But there's only a few, it's going to take years probably and multiple campaigns and hundreds of observations."
The scientists also don't know right now whether the planet has an atmosphere, a vital clue when looking for potential life. "If you have just a rock, no one can live there," Gilbert said. Unfortunately, answering that question will be even more difficult than measuring the world's mass.
So for now, scientists are assuming TOI 700 d is rocky, and using models to try to bridge the gap between what they know about the planet and what they know about what life requires. "Modeling helps us say, how robust is this planet? How well can it maintain habitable surface temperatures under all these conditions?" Gabrielle Engelmann-Suissa, a Universities Space Research Association visiting research assistant at NASA's Goddard Space Flight Center in Maryland, told Space.com.
All told, Engelmann-Suissa and her colleagues ran 20 different models, each starting with a different combination of surface characteristics: Is the world covered in land, or is it covered in water? And atmospheres? Like Earth's today, like ancient Earth's, or like that of Mars, for example.
Engelmann-Suissa and her colleagues have no idea which of those models is a better match for the reality of TOI 700 d — if any of them are. "It sounds like a free-for-all and it kind of is when you model all these types of planets," she said. But the point isn't to stumble upon a scenario that matches the distant truth. Instead, it's to get a sense of the range of possibilities and to understand whether scientific instruments could distinguish between them.
On the first front, the TOI 700 d models look somewhat promising. "None of them went into a runaway greenhouse effect," Engelmann-Suissa said. "In no simulation that we studied did the ocean evaporate, which is cool, that's a good sign." She added that the global average temperatures ranged fairly dramatically, but not beyond the bounds of what scientists can imagine particularly hardy life withstanding.
The hottest simulation, for example, turned up an average surface temperature of about 196 degrees Fahrenheit (91 degrees Celsius). "That's way too hot for us to be comfortable," Engelmann-Suissa said. "It's really hot, but it would kind of be presumptuous to say there's no life"
Modeling's second goal, to better understand how instruments could see the world, offers a grimmer evaluation of TOI 700 d. Nothing scientists have right now will be able to begin to differentiate between all these possible flavors of planet. NASA's next major telescope, the James Webb Space Telescope, won't be able to either, and most future concept designs rely on similar apparatuses.
"That's a big problem in our field, there's kind of dim prospects for looking at these planets," Engelmann-Suissa said. "We need to really experiment with detectors and figure out, OK, how can we get this signal precision? Luckily, it's not my problem."
But what the scientists do know for sure is that starting this summer, TESS will again be pointed toward TOI 700 — and that could reveal whole new mysteries to try to solve. "Maybe we'll find out that we don't know the architecture of the system: Hey, there's a few more planets," Rodriguez said. "Maybe it's something where it starts to resemble our own solar system, which seems to be uncommon.
"But we just don't know, and I think that's really interesting," Rodriguez said. "We're going to have a lot more data and we're just starting to peel the orange and figure out what's going on with the system."
- 7 Ways to Discover Alien Planets
- Photographing an Exoplanet: How Hard Can it Be?
- The Strangest Alien Planets in Pictures
Email Meghan Bartels at mbartels@space.com or follow her @meghanbartels. Follow us on Twitter @Spacedotcom and on Facebook.
Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.
Meghan is a senior writer at Space.com and has more than five years' experience as a science journalist based in New York City. She joined Space.com in July 2018, with previous writing published in outlets including Newsweek and Audubon. Meghan earned an MA in science journalism from New York University and a BA in classics from Georgetown University, and in her free time she enjoys reading and visiting museums. Follow her on Twitter at @meghanbartels.
-
rod Admin said:When scientists search for alien planets, they get a special thrill when they find one that seems to reflect our own world back to us.
An Earth- planet in the habitable zone? New NASA discovery is one special world. : Read more
TOI 700 d will be in the news cycle for sometime I think. We have recent reports on this exoplanet too https://www.space.com/nasa-tess-first-earth-size-habitable-exoplanet-toi-700d.html
It is a super-earth, some 2.26 earth masses and the host star provides about 86% of our Sun's solar energy window when compared. In the Precambrian, this amount of solar energy put the Earth in snow-ball Earth. TOI 700 d, diameter and mass indicate a mean density near 7.37 g cm^-3, denser than Earth's mean density. -
Speed "It's actually farther into the habitable zone than Earth; Earth itself is barely habitable,"Reply
Really??? You're going to go with that?
Then they show a diagram of the TOI system and 700d is just on the inside of the habitable zone.
Unreal. -
rod I use this site as my canonical reference list for exoplanets that are confirmed, The Extrasolar Planets EncyclopaediaReply
4168 are listed as confirmed with distance from 4 light years to 35882 light years. There is a smaller population considered within the host star's habitable zone. Perhaps when it comes to reporting on exoplanets, there are those with zeal to show a new, habitable exoplanet and with life on it too - because of the law of abiogenesis. Failure to establish this in science could be seen as a failure of the scientific explanation for the origin of life on Earth and the Earth being created via cosmic collisions and accidents. -
Lagrange Each newly discovered planet is exciting, of course, however, what disappoints me is that these so-called 'earth-like' planets always seem to orbit red dwarfs, notoriously unstable and dangerous, or worse. Where are all the relatively stable yellow dwarf stars like our own sun with planets in the habitable zone? Truly 'earth-like' planets seem to elude searchers with depressing regularity, and the chances of finding life elsewhere just as elusive.Reply -
rod Lagrange said:Each newly discovered planet is exciting, of course, however, what disappoints me is that these so-called 'earth-like' planets always seem to orbit red dwarfs, notoriously unstable and dangerous, or worse. Where are all the relatively stable yellow dwarf stars like our own sun with planets in the habitable zone? Truly 'earth-like' planets seem to elude searchers with depressing regularity, and the chances of finding life elsewhere just as elusive.
FYI, the list of 4168 exoplanets shows 573 are found orbiting spectral class G stars, so only 13.75% of the reported population. Some of those G type stars are slightly smaller than our Sun and some, slightly larger. The search for a habitable exoplanet seems focused now on class M and K stars - it appears.
The Extrasolar Planets Encyclopaedia -
rod FYI. Smaller stars like red dwarfs and K type stars tend to be fast rotators too, thus more energetic and flaring. The Sun today spins near 2 km/s at the equator but some of these host stars for habitable zone claims - how fast are they spinning? This could be the case for various class G stars in the exoplanet list too. Rod has not seen a good graph here for the habitable zone exoplanets - confirmed and host star spin rates compared to our Sun.Reply -
William Pennat rod said:FYI. Smaller stars like red dwarfs and K type stars tend to be fast rotators too, thus more energetic and flaring. The Sun today spins near 2 km/s at the equator but some of these host stars for habitable zone claims - how fast are they spinning? This could be the case for various class G stars in the exoplanet list too. Rod has not seen a good graph here for the habitable zone exoplanets - confirmed and host star spin rates compared to our Sun.
I thought that too when I read the first story about this newly discovered planet. However, this story does not that this star is a "quiet" red dwarf, no flares so far. That leaves only tidal locking as big negative. Tidal locking is probably less unfavorable to life than flares though. I can imagine there being "temperate zones" on a tidally locked planet. I just wonder if it's ever going to be possible to detect life on any other planet without actually going there in person. Relatively easy in the case of Mars and even some of the giant planet moons in our solar system. Planets around other stars? Not so much.... -
Speed
You nailed it. Red dwarfs are unstable and blast UV into space on a regular basis. Plus, most planets around red dwarfs are tidally locked, another kick in the pants for life.Lagrange said:Each newly discovered planet is exciting, of course, however, what disappoints me is that these so-called 'earth-like' planets always seem to orbit red dwarfs, notoriously unstable and dangerous, or worse. Where are all the relatively stable yellow dwarf stars like our own sun with planets in the habitable zone? Truly 'earth-like' planets seem to elude searchers with depressing regularity, and the chances of finding life elsewhere just as elusive.