Bad news for alien life? Even calm red dwarf stars rage more violently than the sun

a small planet beside a violent star
This artist's impression shows a superflare emitted by a red dwarf star. (Image credit: NASA, ESA and D. Player)

A new study of red dwarf stars has revealed that even the quietest examples of this stellar class are more active and wild than the sun. 

Red dwarfs, officially known as "M dwarfs" by astronomers, are the most common stars in the Milky Way and can remain placid for long periods of time before erupting with huge "superflares." These flares have previously been measured to be 100 to 1,000 times more powerful than similar flares from the sun, with young red dwarfs particularly tumultuous.

These outbursts, as well as eruptions of scorching-hot plasma known as coronal mass ejections (CMES), can be incredibly destructive to planets orbiting red dwarfs, stripping their atmospheres and emitting enough radiation to boil away liquid water even in the so-called habitable zone around them  — the region around a star in which liquid water can exist on a world's surface.

Related: 'Superflares' may make it hard for life to begin around dwarf stars

Such high activity might therefore make it tough for life to take root around red dwarfs, some scientists say.  

One system that astronomers are particularly keen to search for potential signs of life is TRAPPIST-1, which contains seven roughly Earth-size planets, at least three of which are in the habitable zone. But TRAPPIST-1 is a red dwarf, and if it erupts with violent flares like fellow red dwarf Proxima Centauri, which in 2019 emitted a flare 14,000 times brighter than its pre-flare brightness, then TRAPPIST-1's life-hosting potential may be relatively low. 

The team behind the new study, including scientists from France, Portugal, and Switzerland, looked at observations of 177 red dwarfs collected between 2003 and 2020 by the High Accuracy Radial velocity Planet Searcher (HARPS), an instrument on the 3.6-meter telescope at the European Southern Observatory's La Silla Observatory. This allowed them to characterize the long-term variability of these red dwarf stars.

All stars exhibit some degree of variability; for example, the sun has an activity cycle that lasts around 11 years. During this cycle, sunspots on our star's surface increase and decrease in frequency. An increased number of sunspots, driven by magnetic activity, brings an increase in solar flares and space weather intensity. 

Fortunately, life emerges and evolves on much longer timescales than solar cycles. Here on Earth, for example, life emerged about 4 billion years ago, roughly 500 million years after our planet's formation. If life elsewhere in the Milky Way takes a similar time frame to develop, then the long-term variability and ferocity of red dwarfs could make a significant difference to this process.

To investigate the variability of activity for red dwarfs, the team turned to HARPS data because this instrument is particularly useful in looking at how active stars are. This is because it looks at emissions from a star's chromosphere, the second layer of its atmosphere. Emissions from this layer are driven by magnetic activity just like flares, rather than the fusion that takes place in the stars' cores.

Because astronomers have struggled to study individual red dwarfs in detail, the next best thing is looking at a lot of these stars over a long time period. A long view is needed to really get a clear picture of red dwarf variability, but this type of data is limited. 

Related: The search for alien life

An artist's rendering shows exoplanets orbiting a red dwarf star. (Image credit: NASA/JPL-Caltech)

"The unambiguous identification of a cycle requires measurements showing its repetition over several periods. This requires data taken over a long period of time," the team, including lead author and University Grenoble Alpes researcher Lucile Mignon, wrote in the new study. "Even if the time coverage is not sufficient for some stars, however, our data can be used to estimate a minimum cycle period if present."

To make up for the lack of long-term data, the team identified "seasons" for individual stars. The scientists defined these seasons as periods of 150 days during which at least five observations took place, with gaps between observations no longer than 40 days. The team chose 150 days as their season because that is the typical maximum limit for the rotation period of red dwarfs, they wrote.

This led the researchers to identify a subset of 57 stars from the total sample of 177 red dwarfs, which demonstrated that variability is a defining feature of this stellar class. 

"We find that most stars are significantly variable, even the quietest stars," the authors explained, adding that 75% of the 57 stars in the sample displayed long-term variability. "We find long-term timescales ranging from several years to more than 20 years." 

The team acknowledged that this examination of red dwarfs and their variability is really just a first step in understanding these violent stars. They also stated that the true behavior of red dwarfs may be even more complex than these results suggest. 

This complexity may emerge from the fact that the stars may have multiple cycles that impact each other, thus explaining why the behavior of red dwarfs has been a challenge to understand. 

The team's research has been accepted for publication in the journal Astronomy & Astrophysics and is published on the paper repository arXiv

Follow us on Twitter @Spacedotcom and on Facebook. 

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Robert Lea
Senior Writer

Robert Lea is a science journalist in the U.K. whose articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University. Follow him on Twitter @sciencef1rst.

  • rod
    "We find that most stars are significantly variable, even the quietest stars," the authors explained, adding that 75% of the 57 stars in the sample displayed long-term variability. "We find long-term timescales ranging from several years to more than 20 years." The team acknowledged that this examination of red dwarfs and their variability is really just a first step in understanding these violent stars. They also stated that the true behavior of red dwarfs may be even more complex than these results suggest."

    Red dwarf star hosts seem important in astrobiology studies. The exoplanet.eu site shows 917 exoplanets around stars from 0 to 0.7 solar masses, includes TRAPPIST-1 system. Red dwarf stars more variable and hostile to life, reduces the number of potential exoplanet candidates for life on them. So far, no exoplanet is confirmed with life either tiny or E.T. phoning home :)
    Reply
  • Mergatroid
    OK, I don't know who's making things up, but the stars of Red Dwarf have never to my knowledge "raged" on anything.
    Graig, Danny, Chris, Robert and both Norman and Hattie have always been great people. ;)

    https://www.imdb.com/title/tt0094535/
    Seriously though, all the science articles I have read specifically point out how the radiation and flairs from a red dwarf are much worse than for SOL sized stars and are poor candidates for the search for life. Planets around them also tend to be tidally locked.
    Reply
  • Helio
    This further supports earlier claims that red dwarfs are a bit too fisty to favor atmospheres, and life. There is still that one report indicating that the flares may not be that often spewing along their ecliptic, thus exoplanets might avoid a lot of the problems. But this study was very limited and likely just a statistical fluke.

    Fortunately, most of the exoplanet discoveries are in the G-class of stars, which our Sun is a G2V. Here are some stats showing how the G-class stars, which are easier to see since they are much brighter, have more exoplanets.

    Reply
  • JAS
    Admin said:
    Even quiet red dwarfs are prone to extreme outbursts that put our sun to shame, with significant implications on the search for alien life.

    Bad news for alien life? Even calm red dwarf stars rage more violently than the sun : Read more
    These outbursts, as well as eruptions of scorching-hot plasma known as coronal mass ejections (CMES), can be incredibly destructive to planets orbiting red dwarfs, stripping their atmospheres and emitting enough radiation to boil away liquid water

    While these flares may be strong enough to boil away liquid surface water, what about a mile-thick ice sheet? If it turns out that statistically speaking, the Universe favours ocean life below a nice thick ice-sheet, would the red dwarfs and their long lives favour the long-term evolution of life, while the ice-shield protects that developing life from those pesky flairs? So far, I haven't seen any science to support or refute such a statement.
    Reply
  • jamestmallow
    Helio said:
    This further supports earlier claims that red dwarfs are a bit too fisty to favor atmospheres, and life. There is still that one report indicating that the flares may not be that often spewing along their ecliptic, thus exoplanets might avoid a lot of the problems. But this study was very limited and likely just a statistical fluke.

    Fortunately, most of the exoplanet discoveries are in the G-class of stars, which our Sun is a G2V. Here are some stats showing how the G-class stars, which are easier to see since they are much brighter, have more exoplanets.

    Is there any bias in that data such as it being easier to spot planets around certain star types due to brightness ?
    Reply
  • Dave
    The truth is we know very little about red dwarfs. Intelligent life on these worlds would evolve in a much different way. We continue to look at these worlds from an earth-centric point of view. There are many variables that exist where intelligent life may thrive on these worlds. A world with a single large moon orbiting a yellow star in its habitable zone, is one way for intelligent life to thrive, in our galaxy. Let us not be hasty discounting other ways. There are as many variables out there that equal the vast number of stars. Can a world's magnetosphere be stronger than our own world? A very real scenario. This is only one example. As we have seen on earth; life will find a way.
    Reply
  • jamestmallow
    Dave said:
    The truth is we know very little about red dwarfs. Intelligent life on these worlds would evolve in a much different way. We continue to look at these worlds from an earth-centric point of view. There are many variables that exist where intelligent life may thrive on these worlds. A world with a single large moon orbiting a yellow star in its habitable zone, is one way for intelligent life to thrive, in our galaxy. Let us not be hasty discounting other ways. There are as many variables out there that equal the vast number of stars. Can a world's magnetosphere be stronger than our own world? A very real scenario. This is only one example. As we have seen on earth; life will find a way.
    Maybe, or maybe the rare Earth hypothesis is correct and we are the only complex life forms currently inhabiting the Milky Way.
    Reply
  • Unclear Engineer
    jamestmallow said:
    Maybe, or maybe the rare Earth hypothesis is correct and we are the only complex life forms currently inhabiting the Milky Way.

    Even if it takes a "rare Earth" for life to initiate and evolve, it still seems improbable that our Earth is the only planet in the entire gallaxy to have/had/will ever have any life on it.

    But, that still doesn't make it probable that we will ever find any of it even, if it is "out there".
    Reply
  • jamestmallow
    Unclear Engineer said:
    Even if it takes a "rare Earth" for life to initiate and evolve, it still seems improbable that our Earth is the only planet in the entire gallaxy to have/had/will ever have any life on it.

    But, that still doesn't make it probable that we will ever find any of it even, if it is "out there".
    I have no doubt that microbial life exists elsewhere, probably on some of the ocean worlds in the solar system, but complex, multicellular life seems less likely. A technological civilization seems highly unlikely. Perhaps in some far off time and / or galaxy, but nothing we are likely to detect.
    Reply
  • Unclear Engineer
    jamestmallow said:
    I have no doubt that microbial life exists elsewhere, probably on some of the ocean worlds in the solar system, but complex, multicellular life seems less likely. A technological civilization seems highly unlikely. Perhaps in some far off time and / or galaxy, but nothing we are likely to detect.

    With estimates of something like 100 to 400 billion stars in our galaxy, it seems odd that you would think that the empirical evidence of 1 civilization (us) is somehow compatible with an estimate of no others. That is like saying the odds are 0.25 - 1.0 x 10^-11, but not 0.5 - 2.0 x 10^-11.

    Our Earth has not had a nice, even, multi-billion year history that nurtured life from a beginning to now without challenges. In fact, it may well be the challenges that led to the development of highly adaptabe life forms that adapted with "technology" and "civilization".

    So, if you are willing to believe that simple life occurs with some substantial frequency, it seems logical to think that it may very well result is what we would call intelligence in a variety of situations.

    That does not mean space-faring creatures that can roam the galaxy at will. We really do not have evidence that those are even possible.

    And, if we don't get better control of our own behavior, it seems that our data point could become an example of a relatively short time period for a technologically capable civilization.

    But, we really have no information about whether even our relatively close neigboring stars ever had in the past, or ever will have in the future, technological beings inhabiting them.
    Reply